Copied to
clipboard

?

G = C42.158D10order 320 = 26·5

158th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.158D10, C10.322- (1+4), C10.1362+ (1+4), C42D2035C2, C4⋊C4.115D10, C42.C214D5, D10⋊Q838C2, C4.D2032C2, (C4×C20).225C22, (C2×C10).244C24, (C2×C20).191C23, D10.13D437C2, C2.61(D48D10), (C2×D20).173C22, C22.265(C23×D5), D10⋊C4.74C22, C55(C22.56C24), (C2×Dic10).44C22, (C2×Dic5).126C23, C10.D4.55C22, (C22×D5).109C23, C2.33(Q8.10D10), (C5×C42.C2)⋊17C2, (C2×C4×D5).143C22, (C5×C4⋊C4).199C22, (C2×C4).208(C22×D5), SmallGroup(320,1372)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.158D10
C1C5C10C2×C10C22×D5C2×C4×D5D10⋊Q8 — C42.158D10
C5C2×C10 — C42.158D10

Subgroups: 950 in 220 conjugacy classes, 91 normal (13 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×11], C22, C22 [×12], C5, C2×C4, C2×C4 [×6], C2×C4 [×8], D4 [×6], Q8 [×2], C23 [×4], D5 [×4], C10, C10 [×2], C42, C22⋊C4 [×12], C4⋊C4 [×6], C4⋊C4 [×4], C22×C4 [×4], C2×D4 [×6], C2×Q8 [×2], Dic5 [×4], C20 [×7], D10 [×12], C2×C10, C4⋊D4 [×4], C22⋊Q8 [×4], C22.D4 [×4], C4.4D4 [×2], C42.C2, Dic10 [×2], C4×D5 [×4], D20 [×6], C2×Dic5 [×4], C2×C20, C2×C20 [×6], C22×D5 [×4], C22.56C24, C10.D4 [×4], D10⋊C4 [×12], C4×C20, C5×C4⋊C4 [×6], C2×Dic10 [×2], C2×C4×D5 [×4], C2×D20 [×6], C4.D20 [×2], D10.13D4 [×4], C42D20 [×4], D10⋊Q8 [×4], C5×C42.C2, C42.158D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ (1+4) [×2], 2- (1+4), C22×D5 [×7], C22.56C24, C23×D5, Q8.10D10, D48D10 [×2], C42.158D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 93 11 83)(2 153 12 143)(3 95 13 85)(4 155 14 145)(5 97 15 87)(6 157 16 147)(7 99 17 89)(8 159 18 149)(9 81 19 91)(10 141 20 151)(21 142 31 152)(22 84 32 94)(23 144 33 154)(24 86 34 96)(25 146 35 156)(26 88 36 98)(27 148 37 158)(28 90 38 100)(29 150 39 160)(30 92 40 82)(41 129 51 139)(42 73 52 63)(43 131 53 121)(44 75 54 65)(45 133 55 123)(46 77 56 67)(47 135 57 125)(48 79 58 69)(49 137 59 127)(50 61 60 71)(62 109 72 119)(64 111 74 101)(66 113 76 103)(68 115 78 105)(70 117 80 107)(102 122 112 132)(104 124 114 134)(106 126 116 136)(108 128 118 138)(110 130 120 140)
(1 140 21 73)(2 74 22 121)(3 122 23 75)(4 76 24 123)(5 124 25 77)(6 78 26 125)(7 126 27 79)(8 80 28 127)(9 128 29 61)(10 62 30 129)(11 130 31 63)(12 64 32 131)(13 132 33 65)(14 66 34 133)(15 134 35 67)(16 68 36 135)(17 136 37 69)(18 70 38 137)(19 138 39 71)(20 72 40 139)(41 151 119 82)(42 83 120 152)(43 153 101 84)(44 85 102 154)(45 155 103 86)(46 87 104 156)(47 157 105 88)(48 89 106 158)(49 159 107 90)(50 91 108 160)(51 141 109 92)(52 93 110 142)(53 143 111 94)(54 95 112 144)(55 145 113 96)(56 97 114 146)(57 147 115 98)(58 99 116 148)(59 149 117 100)(60 81 118 150)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 77 11 67)(2 66 12 76)(3 75 13 65)(4 64 14 74)(5 73 15 63)(6 62 16 72)(7 71 17 61)(8 80 18 70)(9 69 19 79)(10 78 20 68)(21 124 31 134)(22 133 32 123)(23 122 33 132)(24 131 34 121)(25 140 35 130)(26 129 36 139)(27 138 37 128)(28 127 38 137)(29 136 39 126)(30 125 40 135)(41 98 51 88)(42 87 52 97)(43 96 53 86)(44 85 54 95)(45 94 55 84)(46 83 56 93)(47 92 57 82)(48 81 58 91)(49 90 59 100)(50 99 60 89)(101 145 111 155)(102 154 112 144)(103 143 113 153)(104 152 114 142)(105 141 115 151)(106 150 116 160)(107 159 117 149)(108 148 118 158)(109 157 119 147)(110 146 120 156)

G:=sub<Sym(160)| (1,93,11,83)(2,153,12,143)(3,95,13,85)(4,155,14,145)(5,97,15,87)(6,157,16,147)(7,99,17,89)(8,159,18,149)(9,81,19,91)(10,141,20,151)(21,142,31,152)(22,84,32,94)(23,144,33,154)(24,86,34,96)(25,146,35,156)(26,88,36,98)(27,148,37,158)(28,90,38,100)(29,150,39,160)(30,92,40,82)(41,129,51,139)(42,73,52,63)(43,131,53,121)(44,75,54,65)(45,133,55,123)(46,77,56,67)(47,135,57,125)(48,79,58,69)(49,137,59,127)(50,61,60,71)(62,109,72,119)(64,111,74,101)(66,113,76,103)(68,115,78,105)(70,117,80,107)(102,122,112,132)(104,124,114,134)(106,126,116,136)(108,128,118,138)(110,130,120,140), (1,140,21,73)(2,74,22,121)(3,122,23,75)(4,76,24,123)(5,124,25,77)(6,78,26,125)(7,126,27,79)(8,80,28,127)(9,128,29,61)(10,62,30,129)(11,130,31,63)(12,64,32,131)(13,132,33,65)(14,66,34,133)(15,134,35,67)(16,68,36,135)(17,136,37,69)(18,70,38,137)(19,138,39,71)(20,72,40,139)(41,151,119,82)(42,83,120,152)(43,153,101,84)(44,85,102,154)(45,155,103,86)(46,87,104,156)(47,157,105,88)(48,89,106,158)(49,159,107,90)(50,91,108,160)(51,141,109,92)(52,93,110,142)(53,143,111,94)(54,95,112,144)(55,145,113,96)(56,97,114,146)(57,147,115,98)(58,99,116,148)(59,149,117,100)(60,81,118,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,77,11,67)(2,66,12,76)(3,75,13,65)(4,64,14,74)(5,73,15,63)(6,62,16,72)(7,71,17,61)(8,80,18,70)(9,69,19,79)(10,78,20,68)(21,124,31,134)(22,133,32,123)(23,122,33,132)(24,131,34,121)(25,140,35,130)(26,129,36,139)(27,138,37,128)(28,127,38,137)(29,136,39,126)(30,125,40,135)(41,98,51,88)(42,87,52,97)(43,96,53,86)(44,85,54,95)(45,94,55,84)(46,83,56,93)(47,92,57,82)(48,81,58,91)(49,90,59,100)(50,99,60,89)(101,145,111,155)(102,154,112,144)(103,143,113,153)(104,152,114,142)(105,141,115,151)(106,150,116,160)(107,159,117,149)(108,148,118,158)(109,157,119,147)(110,146,120,156)>;

G:=Group( (1,93,11,83)(2,153,12,143)(3,95,13,85)(4,155,14,145)(5,97,15,87)(6,157,16,147)(7,99,17,89)(8,159,18,149)(9,81,19,91)(10,141,20,151)(21,142,31,152)(22,84,32,94)(23,144,33,154)(24,86,34,96)(25,146,35,156)(26,88,36,98)(27,148,37,158)(28,90,38,100)(29,150,39,160)(30,92,40,82)(41,129,51,139)(42,73,52,63)(43,131,53,121)(44,75,54,65)(45,133,55,123)(46,77,56,67)(47,135,57,125)(48,79,58,69)(49,137,59,127)(50,61,60,71)(62,109,72,119)(64,111,74,101)(66,113,76,103)(68,115,78,105)(70,117,80,107)(102,122,112,132)(104,124,114,134)(106,126,116,136)(108,128,118,138)(110,130,120,140), (1,140,21,73)(2,74,22,121)(3,122,23,75)(4,76,24,123)(5,124,25,77)(6,78,26,125)(7,126,27,79)(8,80,28,127)(9,128,29,61)(10,62,30,129)(11,130,31,63)(12,64,32,131)(13,132,33,65)(14,66,34,133)(15,134,35,67)(16,68,36,135)(17,136,37,69)(18,70,38,137)(19,138,39,71)(20,72,40,139)(41,151,119,82)(42,83,120,152)(43,153,101,84)(44,85,102,154)(45,155,103,86)(46,87,104,156)(47,157,105,88)(48,89,106,158)(49,159,107,90)(50,91,108,160)(51,141,109,92)(52,93,110,142)(53,143,111,94)(54,95,112,144)(55,145,113,96)(56,97,114,146)(57,147,115,98)(58,99,116,148)(59,149,117,100)(60,81,118,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,77,11,67)(2,66,12,76)(3,75,13,65)(4,64,14,74)(5,73,15,63)(6,62,16,72)(7,71,17,61)(8,80,18,70)(9,69,19,79)(10,78,20,68)(21,124,31,134)(22,133,32,123)(23,122,33,132)(24,131,34,121)(25,140,35,130)(26,129,36,139)(27,138,37,128)(28,127,38,137)(29,136,39,126)(30,125,40,135)(41,98,51,88)(42,87,52,97)(43,96,53,86)(44,85,54,95)(45,94,55,84)(46,83,56,93)(47,92,57,82)(48,81,58,91)(49,90,59,100)(50,99,60,89)(101,145,111,155)(102,154,112,144)(103,143,113,153)(104,152,114,142)(105,141,115,151)(106,150,116,160)(107,159,117,149)(108,148,118,158)(109,157,119,147)(110,146,120,156) );

G=PermutationGroup([(1,93,11,83),(2,153,12,143),(3,95,13,85),(4,155,14,145),(5,97,15,87),(6,157,16,147),(7,99,17,89),(8,159,18,149),(9,81,19,91),(10,141,20,151),(21,142,31,152),(22,84,32,94),(23,144,33,154),(24,86,34,96),(25,146,35,156),(26,88,36,98),(27,148,37,158),(28,90,38,100),(29,150,39,160),(30,92,40,82),(41,129,51,139),(42,73,52,63),(43,131,53,121),(44,75,54,65),(45,133,55,123),(46,77,56,67),(47,135,57,125),(48,79,58,69),(49,137,59,127),(50,61,60,71),(62,109,72,119),(64,111,74,101),(66,113,76,103),(68,115,78,105),(70,117,80,107),(102,122,112,132),(104,124,114,134),(106,126,116,136),(108,128,118,138),(110,130,120,140)], [(1,140,21,73),(2,74,22,121),(3,122,23,75),(4,76,24,123),(5,124,25,77),(6,78,26,125),(7,126,27,79),(8,80,28,127),(9,128,29,61),(10,62,30,129),(11,130,31,63),(12,64,32,131),(13,132,33,65),(14,66,34,133),(15,134,35,67),(16,68,36,135),(17,136,37,69),(18,70,38,137),(19,138,39,71),(20,72,40,139),(41,151,119,82),(42,83,120,152),(43,153,101,84),(44,85,102,154),(45,155,103,86),(46,87,104,156),(47,157,105,88),(48,89,106,158),(49,159,107,90),(50,91,108,160),(51,141,109,92),(52,93,110,142),(53,143,111,94),(54,95,112,144),(55,145,113,96),(56,97,114,146),(57,147,115,98),(58,99,116,148),(59,149,117,100),(60,81,118,150)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,77,11,67),(2,66,12,76),(3,75,13,65),(4,64,14,74),(5,73,15,63),(6,62,16,72),(7,71,17,61),(8,80,18,70),(9,69,19,79),(10,78,20,68),(21,124,31,134),(22,133,32,123),(23,122,33,132),(24,131,34,121),(25,140,35,130),(26,129,36,139),(27,138,37,128),(28,127,38,137),(29,136,39,126),(30,125,40,135),(41,98,51,88),(42,87,52,97),(43,96,53,86),(44,85,54,95),(45,94,55,84),(46,83,56,93),(47,92,57,82),(48,81,58,91),(49,90,59,100),(50,99,60,89),(101,145,111,155),(102,154,112,144),(103,143,113,153),(104,152,114,142),(105,141,115,151),(106,150,116,160),(107,159,117,149),(108,148,118,158),(109,157,119,147),(110,146,120,156)])

Matrix representation G ⊆ GL8(𝔽41)

119000000
3230000000
001190000
0032300000
000039132026
0000282215
0000261128
0000882230
,
00100000
00010000
400000000
040000000
00004002813
0000040280
000003810
000033801
,
20214010000
203740330000
40121200000
40332140000
00003528341
00001331035
000025253813
00002791919
,
0034340000
00170000
77000000
4034000000
0000101328
000035403237
000000735
000000834

G:=sub<GL(8,GF(41))| [11,32,0,0,0,0,0,0,9,30,0,0,0,0,0,0,0,0,11,32,0,0,0,0,0,0,9,30,0,0,0,0,0,0,0,0,39,28,2,8,0,0,0,0,13,2,6,8,0,0,0,0,20,21,11,22,0,0,0,0,26,5,28,30],[0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,3,0,0,0,0,0,40,38,38,0,0,0,0,28,28,1,0,0,0,0,0,13,0,0,1],[20,20,40,40,0,0,0,0,21,37,1,33,0,0,0,0,40,40,21,21,0,0,0,0,1,33,20,4,0,0,0,0,0,0,0,0,35,13,25,27,0,0,0,0,28,31,25,9,0,0,0,0,34,0,38,19,0,0,0,0,1,35,13,19],[0,0,7,40,0,0,0,0,0,0,7,34,0,0,0,0,34,1,0,0,0,0,0,0,34,7,0,0,0,0,0,0,0,0,0,0,1,35,0,0,0,0,0,0,0,40,0,0,0,0,0,0,13,32,7,8,0,0,0,0,28,37,35,34] >;

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4G4H4I4J4K5A5B10A···10F20A···20L20M···20T
order122222224···444445510···1020···2020···20
size1111202020204···420202020222···24···48···8

47 irreducible representations

dim1111112224444
type++++++++++-+
imageC1C2C2C2C2C2D5D10D102+ (1+4)2- (1+4)Q8.10D10D48D10
kernelC42.158D10C4.D20D10.13D4C42D20D10⋊Q8C5×C42.C2C42.C2C42C4⋊C4C10C10C2C2
# reps12444122122148

In GAP, Magma, Sage, TeX

C_4^2._{158}D_{10}
% in TeX

G:=Group("C4^2.158D10");
// GroupNames label

G:=SmallGroup(320,1372);
// by ID

G=gap.SmallGroup(320,1372);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,555,100,675,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽